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Abstract

The Lagrangian–Eulerian (LE) approach is used in many computational methods to simulate two-way coupled dis-
persed two-phase flows. These include averaged equation solvers, as well as direct numerical simulations (DNS) and
large-eddy simulations (LES) that approximate the dispersed-phase particles (or droplets or bubbles) as point sources.
Accurate calculation of the interphase momentum transfer term in LE simulations is crucial for predicting qualitatively
correct physical behavior, as well as for quantitative comparison with experiments. Numerical error in the interphase
momentum transfer calculation arises from both forward interpolation/approximation of fluid velocity at grid nodes to
particle locations, and from backward estimation of the interphase momentum transfer term at particle locations to grid
nodes. A novel test that admits an analytical form for the interphase momentum transfer term is devised to test the accu-
racy of the following numerical schemes: (1) fourth-order Lagrange Polynomial Interpolation (LPI-4), (3) Piecewise Cubic
Approximation (PCA), (3) second-order Lagrange Polynomial Interpolation (LPI-2) which is basically linear interpola-
tion, and (4) a Two-Stage Estimation algorithm (TSE). A number of tests are performed to systematically characterize
the effects of varying the particle velocity variance, the distribution of particle positions, and fluid velocity field spectrum
on estimation of the mean interphase momentum transfer term. Numerical error resulting from backward estimation is
decomposed into statistical and deterministic (bias and discretization) components, and their convergence with number
of particles and grid resolution is characterized. It is found that when the interphase momentum transfer is computed using
values for these numerical parameters typically encountered in the literature, it can incur errors as high as 80% for the LPI-
4 scheme, whereas TSE incurs a maximum error of 20%. The tests reveal that using multiple independent simulations and
higher number of particles per cell are required for accurate estimation using current algorithms. The study motivates fur-
ther testing of LE numerical methods, and the development of better algorithms for computing interphase transfer terms.
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1. Introduction

The Lagrangian–Eulerian (LE) approach is widely used to simulate dispersed two-phase flows. This work
focuses on the development of accurate numerical methods for computing the interphase momentum exchange
term in LE simulations of two-phase flows with non-negligible mass loading. Therefore, the findings of this
study are relevant to two-phase flows that must account for two-way coupling. Numerical error incurred in
estimating the interphase momentum transfer term directly affects the fluid velocity solution, and feeds back
to the particle trajectories. These errors can drastically affect the physical picture that emerges from an LE
simulation. The conclusions of this study can also be easily generalized to the mass and energy interphase
exchange terms.
1.1. Physical system

In the LE approach the dispersed phase consisting of Np physical particles2 is represented in a Lagrangian
frame at time t by fXðiÞðtÞ;VðiÞðtÞ; i ¼ 1; . . . ;NpðtÞg, where X(i)(t) denotes the ith particle’s position and V(i)(t)
represents its velocity. For the sake of simplicity we consider monodisperse particles here, although the con-
clusions of this work hold for polydisperse systems also. For monodisperse particles with diameter Dp, the
particle mass is the same for each particle mðiÞ ¼ mp ¼ qpV p, where qp and V p ¼ pD3

p=6 are the individual par-
ticle density and volume respectively. The position and velocity of the physical particles evolve by
2 By
3 Th

conclu
dXðiÞ

dt
¼ VðiÞ; ð1Þ

mp

dVðiÞ

dt
¼ fðiÞ; i ¼ 1; . . . ;N pðtÞ; ð2Þ
where f(i) is the instantaneous force acting on the ith physical particle.
For the case of volumetrically dilute flows3 with finite mass loading, the momentum conservation in the

fluid phase is the single-phase momentum conservation equation augmented by an interphase momentum
transfer term Ffp, which accounts for the coupling of the dispersed-phase momentum with the fluid phase:
qf

oUf

ot
þUf � $Uf

� �
¼ $ � s� Ffp: ð3Þ
This general formulation of the LE approach subsumes the application of the LE method to dispersed two-
phase flows in three different simulation contexts: (1) direct numerical simulation (DNS) using a point-particle
approximation for the dispersed phase, (2) large-eddy simulation (LES), and (3) computational fluid dynamics
(CFD) using averaged equations for the carrier flow. The specific equations appropriate to each of these sim-
ulation methods can be recovered by appropriate interpretation (realization, filtered realization or statistical
average) of the fluid velocity field, stress tensor and interphase momentum transfer term. Table 1 lists the rep-
resentation of the carrier flow field and dispersed phase for these three simulation methods. This paper focuses
primarily on accurate estimation of the interphase momentum transfer term Ffp(x, t) in the context of CFD,
where both fluid and particle phases are represented in a statistically averaged sense. However, the conclusions
of this paper are equally applicable and relevant to the hybrid simulations DNS(b) and LES(b) in Table 1.

The equation for conservation of mean momentum in the fluid phase is obtained by ensemble averaging
(Drew and Passman, 1998)
qfaf

ohUfi
ot
þ hUfi � $hUfi

� �
¼ $ � hsi � hFfpi þ r � sRS; ð4Þ
particle we mean any dispersed-phase element, including solid particles, droplets and bubbles.
is assumption does not pose an inherent limitation on our investigation, but we choose this case to simplify the equations. The
sions of this work will also hold for non-dilute cases but volume displacement effects will need to be accounted for.



Table 1
Representation of carrier flow and dispersed phase in different LE simulations: DNSðbÞ and LESðbÞ are denoted hybrid simulations

Simulation method Carrier flow fields: Uf ðx; tÞ; pðx; tÞ Dispersed phase: fXðiÞðtÞ;VðiÞðtÞ; i ¼ 1; . . . ;NpðtÞg
DNSðaÞ with physical particles Realization Realization: point field
DNSðbÞ with stochastic particles Realization Statistically averaged density
LESðaÞ with physical particles Filtered field of a realization Spatially filtered point field
LESðbÞ with stochastic particles Filtered field of a realization Spatially filtered density
CFD Mean fields Statistically averaged density
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where af is the average fluid volume fraction, qf is the thermodynamic density of the fluid phase (assumed con-
stant), sRS is the residual stress resulting from ensemble averaging, and the angle brackets represent phasic
averages of the terms.

Based on a statistical representation of the dispersed phase as a point process (Subramaniam, 2000, 2001)
one can associate a density f ðx; v; tÞ with the ensemble of realizations fXðiÞðtÞ;VðiÞðtÞ; i ¼ 1; . . . ;NpðtÞg. The
density f(x,v, t) admits a decomposition
f ðx; v; tÞ ¼ nðx; tÞf c
Vðvjx; tÞ; ð5Þ
where f c
Vðvjx; tÞ is the pdf of particle velocity conditional on physical space and n(x, t) is the density of expected

number of particles in physical space. In this notation v is the sample space variable corresponding to particle
velocity V. The expected value of the interphase momentum transfer term (or fluid–particle interaction force)
Ffp(x, t) can be written as an integral over velocity space:
hFfpiðx; tÞ ¼
Z
½v�
hfjx; v; tinðx; tÞf c

Vðvjx; tÞdv; ð6Þ
where hfjx; v; ti is the conditional average of the force acting on the physical particles. It is this quantity that
we seek to calculate accurately in our study. Since we only refer to average fluid velocity and average inter-
phase momentum transfer from here on, to improve readability the angle bracket notation is omitted from
these quantities in the rest of the paper.
1.2. Computational representation

In LE simulations the dispersed-phase density f(x,v, t) is indirectly represented by Nc computational particles at
time t in a Lagrangian frame by fX�ðiÞðtÞ;V�ðiÞðtÞ; i ¼ 1; . . . ;N cðtÞg, with X*(i)(t) denoting the ith computational
particle’s position and V�ðiÞðtÞ its velocity. The number of computational particles Nc does not necessarily have
to equal the number of physical particles Np, which in our point process model is a random number. Typically
Nc is chosen to be smaller than Np by even orders of magnitude sometimes, and the correspondence between
the computational representation and the physical system is enforced in the following statistical sense.

The number of physical particles represented by the ith computational particle is denoted by nðiÞp , such that
the sum over all the computational particles is equal to the expected number of physical particles
XN c

i¼1

nðiÞp ¼ hNpi: ð7Þ
Therefore, the statistical weight assigned to each computational particle is
lðiÞ ¼
nðiÞpPN c

i¼1nðiÞp

¼
nðiÞp

hN pi
; ð8Þ
which satisfies the normalization property
PN c

i¼1l
ðiÞ ¼ 1.

The position and velocity of each computational particle evolve by the equations
dX�ðiÞ

dt
¼ V�ðiÞ; ð9Þ
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mp

dV�ðiÞ

dt
¼ f�ðiÞ; i ¼ 1; . . . ;N cðtÞ; ð10Þ
where f�ðiÞ is the modeled force acting on the ith computational particle. The computational particle position
X�ðiÞ and velocity V�ðiÞ are evolved in time from initial conditions at time t0 that correspond to a specified initial
number density n(x, t0) and velocity probability density function f c

Vðvjx; t0Þ of the physical particles.
A general form of the particle force model that subsumes different drag force correlations is
f�ðiÞðtÞ ¼ f UfðX�ðiÞðtÞ; tÞ;V�ðiÞ; qf ; mf ; qp;Dp

� �
; ð11Þ
where qf and mf is the fluid phase density and kinematic viscosity, respectively. A more general force model
could include additional terms such as the added mass term, Basset history term, or Saffman lift, as dictated
by the problem physics. Even though we only model the drag in our study, our conclusions regarding the accu-
rate numerical calculation of the interphase momentum transfer term will apply to this wider class of flows,
with minor modifications to account for the changes in the functional form f that will be necessitated by the
additional physics.

1.3. Problem statement

Proper representation of the flow physics in an LE simulation is contingent upon accurate calculation of the
mean interphase momentum transfer term Ffp(x, t) from the LE solution, i.e., the mean fluid velocity field
Uf(x, t), and the position and velocity of the computational particles fX�ðiÞðtÞ;V�ðiÞðtÞ; i ¼ 1; . . . ;N cg. The mean
interphase momentum transfer term Ffp(x, t) at Eulerian grid nodes is estimated from this solution data in two
steps:

(1) Calculation of particle forces f�ðiÞ: This requires calculation of the fluid velocity at the particle location
UfðX�ðiÞ; tÞ in Eq. (11) from the fluid velocity at Eulerian grid nodes. The numerical estimate of the fluid
velocity field Ufðx; tÞ at the particle location X�ðiÞ using a representation of Uf at M grid nodes is denoted

UfðX�ðiÞ; tÞ
� �

M
, and is obtained through forward interpolation/approximation as
fUfðX�ðiÞ; tÞgM ¼FfUf
m;m ¼ 1; . . . ;M ; X�ðiÞg; ð12Þ

where the fluid velocity at the mth Eulerian grid node is denoted Uf
m, and F is a generic interpolation/

approximation operation. The particle force f�ðiÞ is then obtained by substituting UfðX�ðiÞ; tÞ
� �

M
for

UfðX�ðiÞ; tÞ in Eq. (11).

(2) Mean interphase momentum transfer Ffpðx; tÞ from particle forces f�ðiÞ: The numerical procedure to calcu-

late the Eulerian mean field Ffpðx; tÞ from particle data fX�ðiÞðtÞ; f�ðiÞðtÞ; i ¼ 1; . . . ;N cg is describe vari-
ously as mean estimation from particle data, projection of fluid–particle interaction forces onto the
Eulerian grid, or backward estimation. The numerical estimate for the mean interphase momentum
transfer Ffp(x, t) at the mth Eulerian grid node is denoted fFfp

m g, and the general form of its estimate from
the particle data is
fFfp
m g ¼ EfX�ðiÞ; f�ðiÞ; nðiÞp ; i ¼ 1; . . . ;N cðtÞg; ð13Þ

where E like F is another generic interpolation/approximation operator.
1.4. Review of existing schemes

Both forward interpolation and the estimation of mean fields from particle data have been studied by other
researchers, and a selective review that motivates this study follows.

1.4.1. Forward interpolation

Yeung and Pope (1988) investigated many numerical approaches for interpolation of fluid velocity at a
Lagrangian particle location in homogeneous turbulence. Among the schemes they considered are a trilinear
scheme, a 13-point third-order scheme based on Taylor series (TS-13), and a fourth-order cubic spline. Their
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study shows that the fourth-order spline is most accurate for forward interpolation, followed by the TS-13
scheme. The trilinear interpolation scheme was found to be unacceptably poor. Balachandar and Maxey
(1989) also analyzed various numerical schemes to calculate the fluid velocity at a particle location in one-
way coupled spectral simulations of decaying homogeneous turbulence by comparing them with the most
accurate, and also the most computationally expensive, direct summation (DS) scheme. They studied the
TS-13 scheme, sixth-order Lagrangian interpolation (LPI-6), partial Hermite interpolation (PHI), shape func-
tion method (SFM), and linear interpolation (LPI-2). They find that the estimation of statistical quantities
such as Lagrangian velocity correlation, effective eddy diffusivity, and mean square particle dispersion are
not sensitive to the approximation scheme used. They show that on a 323 grid size at low Reynolds number
(Rek ¼ 17) the LPI-6 scheme is sufficient to accurately extract quantities such as absolute velocity of single par-
ticle and also the relative velocity of two particles. However, at higher Reynolds number (Rek ¼ 26:5) the more
accurate PHI scheme is needed, at additional computational expense. It should be noted that the TS-13
scheme is best suited to simulations of homogeneous turbulence that incorporate a de-aliasing procedure
and make use of staggered grid. The PHI and SFM schemes have been developed specifically for spectral sim-
ulation. While these studies provide useful guidelines to choose appropriate schemes for forward interpola-
tion, they only address the first step in accurate estimation of the mean interphase momentum transfer term.

1.4.2. Estimation of mean field from particle data

Various approaches have been proposed for the second step that involves estimation of the mean interphase
momentum transfer term Ffp

m from particle data fX�ðiÞðtÞ; f�ðiÞðtÞ; i ¼ 1; . . . ;N cg. We review three principal
approaches here: (1) the particle-in-cell (PIC) method, (2) the projection onto neighboring nodes (PNN)
method, and (3) the projection onto identical stencil (PIS) method.

PIC: Crowe (1982) extended the particle-in-cell (PIC) method (Evans and Harlow, 1957; Harlow, 1988) to
calculate the mean interphase momentum transfer term. In this method, the mean interphase momentum
transfer term is calculated as the summation of forces f*(i) exerted on the fluid by each particle in the control
volume surrounding a grid node as shown in Fig. 1a and also expressed by Eq. (A.1). This is effectively a box
kernel, which has the disadvantage that its estimate is piecewise-constant in physical space (Pope, 2000).
Therefore this method cannot be used to calculate gradients of the mean interphase momentum transfer field,
if they are needed.

PNN: This is a so-called projection method wherein rather than summing all the particle forces around a
grid node, each particle force is projected onto the neighboring grid points (eight in 3-D, four in 2-D) based on
a weighting scheme (see Fig. 1b). The weights can be based on the cell volumes as in Squires and Eaton (1990),
or on the distance between the particle and the node as used by Elghobashi and Truesdell (1993). The expres-
sion for estimation by PNN method based on the distance between particle and the node is given by Eq. (A.3).
1

1

34

1

3

2

4

2

Fig. 1. Sketch showing the PIC and PNN mean estimation schemes: (a) Mean estimation by PIC method in 2-D. Grid node 1 receives the
full contribution from particles (shown as black spheres) located in cell area (shown by dotted lines) around it. (b) Mean estimation by
PNN method in 2-D. For a particle (shown as a black sphere) in a two-dimensional cell, grid node 1 receives a fraction of the particle force
which is proportional to the area of region 1 divided by the entire cell area.
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Boivin et al. (1998) compared PIC and PNN methods by first forward-interpolating a turbulent velocity
field specified at Eulerian grid nodes to randomly generated off-grid particle locations using a third-order
LPI scheme. These interpolated fluid velocities at the particle locations are then used as particle data to
estimate the fluid velocity field at the Eulerian grid nodes using PIC and PNN. Their test results show that
the PNN scheme results in a fluid velocity spectrum that is closer to the original velocity field spectrum field
than that obtained using the PIC method. However, the conclusions of the Boivin study need to be interpreted
carefully because their test is significantly different from our problem of mean interphase momentum transfer
estimation in many respects. Since the Boivin et al. (1998) study only tries to recover the fluid velocity field
instead of the interphase momentum transfer term (cf. Eq. (11)), it is not affected by the particle velocity
V*(i) or its pdf f c

Vðvjx; tÞ. Boivin et al. randomly assign only one particle location to each cell. As is shown later
in this paper, this results in an unacceptably high level of statistical error.

PIS: Sundaram and Collins (1996) show that in order to ensure overall energy balance, the order of the
interpolation scheme used in the forward interpolation should be the same as that used in the backward esti-
mation. We noted earlier in this paper that the studies on forward interpolation reveal that at least for turbu-
lent velocity fields in DNS, high-order schemes like TS-13 or LPI-6 are needed for accuracy. These high-order
schemes have broad stencils in physical space that extend well beyond the cell where the particle is present. A
PIS scheme will then require a weighting kernel with identically broad support to compute the mean inter-
phase momentum transfer from particle forces. Each particle exerts a non-local influence on the estimate of
the interphase momentum transfer, and this raises a concern whether the numerics is consistent with the flow
physics. Using a fourth-order LPI scheme for both forward interpolation and backward estimation (in Eqs.
(A.2) and (A.3), respectively) on coarse and fine grid resolution, they note that the result of spreading particle
influence over a large volume does not significantly affect the dynamics of the mean energy in a particle-laden
turbulent flow. On this basis, Sundaram and Collins (1996) assert that the PIS symmetry in the order of the
scheme used for both forward interpolation and backward estimation is required, even if it increases the
domain of influence of each particle due to a broad interpolation stencil.

Narayanan et al. (2002) assess the relative merits of the PNN and PIS methods by comparing the growth
rates of mixing layers obtained using LE simulations with these schemes, to those obtained from a linear sta-
bility analysis. However, the results obtained for growth rates are too close to draw any conclusions about the
relative merits of the two methods.

In all LE numerical implementations, including those cited above, there are two numerical parameters: the
number of Eulerian grid cells and the number of computational particles. The estimate for the mean interphase
momentum transfer term Ffp on an Eulerian grid is obtained from a finite number of particle forces f*. This
leads to statistical error, which can only be eliminated in the limit of infinite particles (also called the dense data
limit). This limit is only asymptotically approached by simulations with a very large number of particles, and
such calculations are expensive. Typical LE simulations must be reasonably accurate in a range of finite number
of particles. A finite number of grid cells also leads to spatial discretization error as in CFD of single-phase flow.
Numerical schemes in the LE context need to balance statistical and spatial discretization error.

In spite of the considerable work on forward interpolation as well as projection methods (PIC, PNN, PIS),
there is no comprehensive study that quantifies the spatial and statistical error resulting from numerical esti-
mation of mean interphase momentum transfer. The conclusions of Boivin et al. (1998) are based on a single
test with 963 particles that does not quantify the statistical error, or its scaling with the number of particles.
The Sundaram and Collins (1996) study tests only the fourth-order LPI scheme and does not quantify spatial
and statistical error. Narayanan et al. (2002) consider LPI schemes of different orders but they do not char-
acterize the behavior of spatial or statistical error. Lakehal and Narayanan (2003) quantify the effect of vary-
ing the total number of particles in an LE simulation on calculation of the average interfacial force. They find
that increasing the number of particles shows a reduction in statistical noise, and the estimated interfacial
force tends to an asymptotic value. However, this study also does not decompose the error into deterministic
and statistical components. Also while numerical convergence with number of particles is empirically demon-
strated, the accuracy of the scheme is not quantified. Are et al. (2005) investigate only spatial discretization
error by considering the limit of dense data (1 billion particles).

In this work we construct a test problem for which the interphase momentum transfer term can be calcu-
lated analytically. We then compare the numerical error incurred by four different schemes in estimation of the
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mean interphase momentum transfer term. The total numerical error is decomposed into statistical and deter-
ministic components. Statistical error is defined as the fluctuations in interphase force estimation that arise as
a result of finite particles. Deterministic error, which is further decomposed into bias and discretization com-
ponents, results from finite number of particles and grid size, respectively. The individual contributions to the
total numerical error from finite number of particles (statistical error and bias error) and finite grid size (spa-
tial discretization error) are identified. The behavior of statistical error, bias error, and spatial discretization
error is characterized over a range of grid sizes and total number of particles.

The four numerical schemes for calculation of the mean interphase momentum transfer term that are con-
sidered in this work are:

(1) LPI-4: This is a fourth-order Lagrange polynomial interpolation (LPI) which has been widely used for
both forward and reverse interpolation (Sundaram and Collins, 1996; Narayanan et al., 2002; Sundaram
and Collins, 1999). It is a true interpolation scheme because it recovers the specified values of fluid veloc-
ity at grid nodes. The LPI-4 basis functions are shown in Fig. 2a. Since this scheme is fourth-order accu-
rate (Conte and Boor, 1980), in forward interpolation the error incurred using LPI-4 should exhibit
fourth-order convergence with respect to grid spacing for a uniform grid. The LPI-4 stencil is four grid
cells wide, as shown in Fig. 2a. In backward estimation also its kernel bandwidth is four grid cells wide.
The kernel bandwidth determines the extent to which Lagrangian particle data is smeared on the
Eulerian flow grid in backward estimation.

(2) PCA: This scheme has piecewise continuous cubic polynomial basis functions that are similar to the ker-
nel derived by Monaghan and Lattanzio (1985) based on B-spline functions. See Fig. 2b for the PCA
basis functions. It is important to note that this is not standard cubic spline interpolation that involves
a matrix solution for the spline coefficients. In fact, this is only a piecewise cubic approximation that does
not exactly recover specified values of the velocity field at the grid nodes. To distinguish it from the stan-
dard cubic spline interpolation, this scheme is referred to as piecewise cubic approximation (PCA).
Monaghan (1992) notes that this scheme is only second-order accurate, in contrast to cubic spline inter-
polation which is fourth-order accurate. In backward estimation its kernel bandwidth is four grid cells
wide.

(3) LPI-2: This is a second-order Lagrange polynomial interpolation scheme, which is essentially a trilinear
interpolation scheme that is identical to the PNN method (Squires and Eaton, 1990; Elghobashi and
Truesdell, 1993; Boivin et al., 1998). It is a true interpolation scheme that is formally second-order accu-
rate for forward interpolation. In backward estimation its kernel bandwidth is two grid cells wide.
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Fig. 2. (a) Basis functions for LPI-4. (b) Basis functions for PCA. In both figures, squares represent the fluid velocity at that grid node,
X ðkÞ is the location of particle (shown by black sphere) located between nodes m and m + 1. The intersections of the vertical dashed line
with the curves (shown by crosses) indicates the value of the basis function at X ðkÞ that multiplies the nodal fluid velocity in Eq. (A.2) to
compute the fluid velocity at X ðkÞ.
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(4) TSE: This two-stage estimation algorithm is developed by Dreeben and Pope (1992). It is useful in sim-
ulations that involve unstructured meshes (Subramaniam and Haworth, 2000). For forward interpola-
tion it is identical to LPI-2, and is formally second-order accurate. For backward estimation it
employs a grid-free two-stage algorithm. In the first stage, it estimates weighted values of the particle
property using a linear kernel of user-specified bandwidth (e.g., interphase force) at knot locations that
depend on where the particles are located. The second stage involves least-squares fitting of locally linear
or quadratic functions to these knot values. The advantage of this method is that its convergence char-
acteristics are not tied to the Eulerian grid (in fact it does not need an Eulerian grid at all!), but by adjust-
ing the bandwidth of the kernel the user can balance the contribution from truncation and statistical
errors.

For complete details of the interpolation schemes, the reader is referred to Appendix A.
2. Test problem

We consider a simple physical problem to examine the numerical convergence and accuracy of the four
schemes in calculating the mean interphase momentum transfer term. The physical system is a volumetrically
dilute particle-laden flow with large particle to fluid density ratio (qp � qf ). The solid particles are monodis-
perse and small compared to the smallest flow length scale, but large enough so Brownian motion of the par-
ticles can be neglected. The Reynolds number for relative motion between the particle and the fluid is Oð1Þ.
Under these conditions the interphase momentum transfer is due to drag and buoyancy forces. If we neglect
buoyancy and assume a linear drag model (which is valid for Reynolds number Oð1Þ), the modeled particle
force f�ðiÞ is given by
4 Alt
particl
f�ðiÞ ¼ mp

Uf X�ðiÞ
� �

� V�ðiÞ

sp

; ð14Þ
where sp ¼ qpD2
p=ð18mfqfÞ is the particle momentum response time. In this test we do not consider time

evolution, but simply evaluate the mean interphase momentum transfer term at some fixed time instant t.
Therefore the time dependence is omitted in the rest of the description of this static test.

We consider a statistically homogeneous problem where the particle velocity distribution is independent of
physical location x, so that f c

VðvjxÞ ¼ fVðvÞ. If the particle density in physical space fXðxÞ ¼ nðxÞ=hNpi is
known, then Eq. (6) simplifies to
hFfpiðxÞ ¼ hNpi
Z
½v�
hfjx; vifXðxÞfVðvÞdv: ð15Þ
If the mean fluid velocity field UfðxÞ is specified, along with the particle position and velocity distributions, the
final analytical expression for hFfpi from Eq. (15) is
hFfpiðxÞ ¼ mphN pi
sp

UfðxÞfXðxÞ � hVifXðxÞ
� 	

: ð16Þ
It is interesting to note that although in the above equation hFfpi is independent of the variance in particle
velocity, numerical estimates for this quantity suffer from statistical noise which increases with particle velocity
variance. The estimate of mean interphase momentum transfer term depends on (i) the mean fluid velocity
field, (ii) the particle position distribution, and (iii) the particle velocity distribution.4 The following specifica-
tion of the mean fluid velocity field, and the particle position and velocity distribution define the baseline test
hough the analytical value depends only on the mean particle velocity, the numerical estimate depends on the variance of the
e velocity distribution.



R. Garg et al. / International Journal of Multiphase Flow 33 (2007) 1337–1364 1345
case, which we denote Test 1. The fluid velocity field Uf ¼ fU f
1; 0; 0g is chosen to be of a simple transcendental

form
Fig. 3.
(17) an
U f
1ðx; yÞ ¼ cos

2px
Lx

� �
cos

2py
Ly

� �
; ð17Þ
in a domain D ¼ ½0;Lx� � ½0;Ly � � ½0;Lz�. The particle positions are randomly chosen according to a uni-
form distribution in the domain D. The particle velocity V ¼ fV 1; 0; 0g is specified by the distribution of
V 1, which is chosen to be a Gaussian with unit mean and variance r2. For the baseline test the variance is
chosen to be zero, which corresponds to a delta-function specification of the particle velocity distribution.
Fig. 3 shows the contour plot of scaled analytical mean interphase momentum transfer term in the x-direction
obtained from Eq. (16) for the baseline test case. This baseline test case is used to completely characterize the
statistical error, bias error, and spatial discretization error for the four numerical schemes over a wide range of
numerical parameter values.

We consider three variants of the baseline case in our tests to specifically probe certain other convergence
characteristics of the numerical schemes used to estimate the mean interphase momentum transfer term.
Unless noted otherwise, the problem parameters are retained at their baseline values. In the first variant (Test
2), a non-zero particle velocity variance is introduced to represent non-zero particle velocity fluctuations that
can be expected in most practical two-phase flows. For the linear drag law considered here, this non-zero par-
ticle velocity variance manifests itself as statistical noise in the estimate of the mean interphase momentum
transfer. This test assesses the capability of the various schemes to yield accurate estimates of the mean inter-
phase momentum transfer term with finite computational particles for noisy data.

Tests 3 and 4 are variants of Test 2 that consider the effect of changing the particle position distribution and
spectrum of the fluid velocity field, respectively. In these tests we only characterize the total error, but we do
not identify individual contributions. In Test 3 we investigate the effect of a non-uniform distribution of phys-
ical particles while retaining the non-zero particle velocity variance in Test 2. If we do not introduce any com-
putational particle number density control, the distribution of computational particles mimics that of the
physical particles and we essentially generate non-uniform sampling. This test is representative of the spatial
inhomogeneity in number density that is encountered in LE computations of real two-phase flows.

In Test 4, the effect of changing the spectrum of the fluid velocity field is investigated by changing the wave-
length of the cosine waves in Eq. (17) (the non-zero particle velocity variance of Test 2 is retained). Our intent
in performing this test is to characterize the applicability of the four schemes to CFD, LESðbÞ and DNSðbÞ, each
of which has progressively more high-wavenumber content in the velocity field. By changing the wavelength of
the cosine waves on a fixed grid, we effectively vary the resolution of the velocity field, and investigate the con-
sequences on the computed interphase momentum transfer term.
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3. Numerical analysis

In order to calculate a numerical estimate of hFfpiðxÞ, the physical domain D is discretized using a struc-
tured grid with Mx �My �Mz cells. In all our tests the domain is a unit cube with 10 6 Mx ¼ My 6 60,
and Mz ¼ 3. Since the mean velocity field is only a function of ðx; yÞ, we use more grid cells in the x–y plane.
The expected total number of physical particles hNpi is represented by N c computational particles, with each
computational particle representing np ¼ hNpi=N c physical particles, resulting in equal statistical weight
l ¼ 1=N c for each computational particle. The average number of computational particles in a grid cell is
denoted N pc ¼ N c=M , where M ¼ MxMyMz is the total number of grid cells. The numerical parameters affect-
ing the accuracy of mean interphase momentum transfer term estimation are (i) the number of computational
particles per cell Npc, and (ii) grid size, which we represent by total number of nodes M.

The numerical estimate for FfpðxÞ at the mth grid node obtained from the above discretization (M cells and
Npc particles per cell) is written as
fFfp
m gNpc;M

¼ 1

V m

XN c

i¼1

f�ðiÞnðiÞp W ðX�ðiÞ; xmÞ; ð18Þ
where W is a kernel having compact support that determines the influence of the particle force at a grid node
located at xm, and Vm is the geometric volume of the mth grid cell. The reader is referred to Appendix A for
complete details on the estimation procedure.

The error involved in the above estimate is composed of forward interpolation error and backward estima-
tion error corresponding to steps 1 and 2 in Section 1.3, respectively. The forward interpolation error is a
result of interpolating the fluid velocity that is known at M nodes to an arbitrary particle location X*(i) using
Eq. (A.2). This interpolated value is denoted {Uf(X*(i))}M (subscript M represents the number of grid nodes).
A global rms forward interpolation error in estimating Uf(X*(i)) is defined as
�U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN c

i¼1 fUfðX�ðiÞÞgM �UfðX�ðiÞÞ
� �2

N c

s
/ 1

Mp ; ð19Þ
which scales as M�p with grid size, where the exponent p depends on the order of convergence of the numerical
scheme. Although we use data from Nc particles to compute this error, the forward interpolation error scales
purely with grid size (independent of number of particles). The error from forward interpolation is reported in
Section 4.1.1.

In this study we are interested in characterizing the individual contributions to total numerical error in the
estimate fFfp

m gNpc;M
from forward interpolation (step 1) and backward estimation (step 2). In order to isolate

and quantify the backward estimation error incurred by the four different schemes, we need the forward inter-
polation error to remain the same when forming the estimate fFfp

m gNpc;M
. This is achieved by exploiting the fact

that the fluid velocity field is analytically specified by Eq. (17) in the entire domain. In the rest of the error
analysis that follows for the numerical estimation of Ffpðx; tÞ, it is assumed that the fluid velocity is obtained
from the analytical expression and therefore, the error in the estimate arises only from backward estimation.
In all the tests that report backward estimation errors (Section 4.1.2 through end of Section 4.2), the exact
analytical expression for UfðX�Þ is used in Eq. (14) to calculate f�.

The numerical estimate fFfp
m gNpc;M

is a random variable, and its difference from FfpðxÞ measured in p-norm
defines the total numerical error:
�F � kfFfp
m gNpc;M

� hFfp
m ikp: ð20Þ
This total numerical error contains contributions from finite grid resolution and finite number of computa-
tional particles. Whereas in standard CFD finite-difference/finite-volume codes it is sufficient to reduce the
grid size and time step to empirically establish numerical convergence, this difference in the dependence of
the numerical error requires a new approach to establishing numerical convergence of LE calculations.

Many LE numerical studies employ the conventional CFD approach to establish numerical convergence.
However, simply increasing the grid resolution by increasing M while keeping the total number of computa-
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tional particles Nc fixed does not result in a monotonic decrease of the total error. This is because as M is
increased for fixed Nc, the number of computational particles per cell N pc ¼ N c=M decreases. Decreasing
Npc means fewer samples per cell, and this results in higher statistical error (which characterizes the level of
fluctuations in the random estimate fFfp

m gNpc;M
) for grid-based estimation methods. On the other hand, while

decreasing the total number of cells M with fixed total number of computational particles does decrease the
statistical error, it is at the cost of increasing spatial discretization error.

Most numerical studies seek to establish convergence of LE simulations by increasing the total number of
particles Nc. For a fixed total number of particles there exists an optimal choice of grid size that minimizes the
total numerical error. Clearly, a complete characterization of the individual contributions to total error from
finite number of particles and finite grid size is essential to determine the optimal choice of numerical param-
eters for any scheme. This motivates an error decomposition that is described below.

3.1. Error decomposition

We decompose the numerical error using an approach similar to that employed by Xu and Pope (1999). For
our test problem, only the x-component of the force contributes to the error in Eq. (20) which is decomposed
as
�F � fF fp
x;mgNpc;M

� hF fp
x;mi ¼ RF þ DF ¼ RF þ BF þ SF ; ð21Þ
where RF is the statistical error, and DF is the deterministic error. The deterministic error DF is further decom-
posed into bias BF and discretization SF error components.

The finite number of particles used in Eq. (18) to generate a random estimate of the mean interphase
momentum transfer term fFfp

m gNpc;M
results in statistical fluctuations of the estimate about its expected value.

The statistical error RF , arising from these fluctuations, is defined as
RF � fFfp
m gNpc;M

� hfFfp
m gNpc;M

i: ð22Þ
The statistical error is assumed to follow a normal distribution, and is modeled as
RF ¼
cF hffiffiffiffiffiffiffiffi
Npc

p ; ð23Þ
where cF is the statistical error coefficient and h is a standardized normal random variable. Xu and Pope (1999)
note in their calculations that the statistical error RF converges as N�1=2

pc and an identical behavior has been
seen in other PDF/Monte Carlo simulations (Pope, 1995; Welton et al., 1997). Clearly the statistical error de-
creases as the number of computational particles per cell Npc increases, and for sufficiently high Npc we expect
cF to be a constant independent of Npc. As we shall see later, statistical error can also be decreased by perform-
ing multiple independent simulations (MIS) with the same nominal Npc per simulation, and then averaging
over the MIS.

The bias error BF is defined as the deterministic error resulting from finite number of particles and is written
as
BF � hfFfp
m gNpc;M

i � fFfp
m g1;M : ð24Þ
Numerical experiments and analysis (Pope, 1995; Xu and Pope, 1999) validate the following model for the bias
error:
BF ¼
bF ðMÞ

Npc

; ð25Þ
where the bias coefficient bF indicates the magnitude of bias for a given Npc. Note that the bias coefficient bF is
assumed to be a function of the grid size through M. It is important to note that MIS can reduce statistical
error, but not the bias error. The only way to reduce bias error is to increase Npc.
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Finally, the discretization error is identified as the remaining deterministic error in �F, such that
Fig. 4.
are the
SF � fFfp
m g1;M � hFfp

m i: ð26Þ
The discretization error for most finite-difference/finite-volume CFD schemes with power-law truncation error
dependence can be modeled as
SF ¼
aF

Mp ; ð27Þ
where aF is the discretization error coefficient and the exponent p depends on the order of convergence of the
numerical scheme. In a time-dependent problem, the discretization error will also include a contribution from
the temporal discretization error, and all the aforementioned error definitions will be parametrized by the time
step Dt, in addition to Npc and M.

4. Results

4.1. Test 1: Baseline test case

The baseline test case with transcendental mean fluid velocity field, and uniformly distributed particles with
delta-function particle velocity distribution was defined in Section 2. This test is simulated with periodic
boundary conditions on the unit cube for each numerical scheme. In all the results presented, the estimate
and as well as analytical values for the interphase momentum transfer term are normalized by the maximum
analytical value hFfpimax in the domain. Therefore, all the individual error contributions are also normalized.

4.1.1. Forward interpolation error

Fig. 4 shows the forward interpolation error defined by Eq. (19) as a function of cell size h ¼ ðDxDyÞ1=2. In
the results shown, the number of particles per cell N pc ¼ 100, and the grid varies from 21 · 21 · 4 nodes to
61 · 61 · 4 nodes. The figure shows that the fourth-order LPI-4 scheme is the most accurate of all the schemes,
and it also has the highest rate of convergence. The least accurate scheme is PCA, and the reason is because
this approximation scheme does not exactly recover nodal values, unlike the other three schemes that are true
interpolation schemes. The PCA results converge with second-order accuracy, as expected. Since TSE uses lin-
ear basis functions for forward interpolation (see Appendix A), its accuracy and convergence are identical to
that of LPI-2. The data show that the numerical schemes follow their theoretical rates of convergence, which is
four for LPI-4, and two for LPI-2, TSE, and PCA (Monaghan, 1992).
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4.1.2. Statistical error

Although Eq. (22) provides a formal definition of the statistical error, actually computing the statistical
error requires a numerical estimate of hfFfp

m gNpc;M
i. We estimate hfFfp

m gNpc;M
i by performing M multiple inde-

pendent realizations, each with the same Npc and on the same grid M but initialized with different random
seeds, and taking the arithmetic mean of the MIS. An estimate of the statistical error bRF can now be obtained
by replacing hfFfp

m gNpc;M
i in Eq. (22) with its MIS estimate hfFfp

m gNpc;M
iM, to get
Fig. 5.
cell Np

values
bRF � fFfp
m gNpc;M

� hfFfp
m gN pc;M

iM: ð28Þ
The scaling of this estimate for the statistical error with M is revealed by defining RF ;M � hfFfp
m gNpc;M

iM�
hfFfp

m gNpc;Mi, and rewriting bRF as
bRF ¼ RF � RF ;M ¼
cF hffiffiffiffiffiffiffiffi
N pc

p � cF nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMNpcÞ

p ; ð29Þ
where h and n are independent standardized normal random variables. (See Appendix B for details.) The scal-
ing shows that hfFfp

m gNpc;MiM ! hfF
fp
m gNpc;Mi as M�1=2 for sufficiently large M, and this is true for any Npc > 1.

This M�1=2 scaling is verified by the plot in Fig. 5a of rmsðbRF Þ as a function of M at ðx ¼ 0:5; y ¼ 0:5Þ for a
fixed number of particles Npc ¼ 100 and a 21� 21� 4 grid. The slopes of the least-squares line fits to the data
from all schemes are close to �0:5. This plot also tells us that using MIS we can reduce the statistical error
RF ;M, which scales as ðMN pcÞ�1=2, to negligible levels compared to the other error contributions.

We now verify the dependence of RF ;M on Npc that is predicted by Eq. (29). Fig. 5b shows the variation of
rmsðbRF Þ with Npc for a fixed number of realizations M ¼ 100 on a 21 · 21 · 4 grid at a representative location
ðx ¼ 0:5; y ¼ 0:5Þ. The slopes of the least-squares line fits to the data are all close to �0:5, thus verifying the
expected convergence of the statistical error as N�1=2

pc that is predicted by Eq. (29). For the baseline case of zero
particle velocity variance there is little difference in the statistical error incurred by various schemes. Even with
just 10 particles per cell the statistical error is Oð10�4Þ.

When computing the contributions from bias error and deterministic error to the total error using Eq. (21),
the statistical error will need to be negligibly small in comparison. From Eq. (28) we can infer that if the prod-
uct NpcM is sufficiently large, then the statistical error can be made arbitrarily small. In this case the estimate
for average interphase momentum transfer term hfFfp

m gNpc;M
iM will have a very small and spatially uniform

statistical error for different values of Npc. The results for deterministic and bias error presented in the follow-
ing subsections correspond to NpcM ¼ 60; 000, which ensures very low statistical error.
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4.1.3. Deterministic error

The total deterministic error DF is estimated by D̂F using an ensemble-averaged estimator at finite Npc and
the analytical solution:
Fig. 6.
LPI-4
determ
bDF ¼ hfFfp
m gNpc;M

iM � hFfp
m i

��� ���: ð30Þ
The contour plot of deterministic error estimated by Eq. (30) is shown in Fig. 6 for a 21 · 21 · 4 grid with
Npc ¼ 400 using M ¼ 150 independent realizations (NpcM ¼ 60; 000). Of the four schemes, LPI-4 incurs
the least total deterministic error and the magnitude of error incurred by the other three schemes is compa-
rable. The figure also shows that the location of the maximum deterministic error is not the same for all
schemes. Therefore, a comparison of deterministic error incurred by the different schemes at a fixed location
can be misleading.

4.1.4. Bias error

Bias error, which is defined by Eq. (24) in Section 3.1, is that part of the deterministic error resulting from a
finite number of particles. Similar to the estimation of expected values that arise in the statistical error, the
quantity hfFfp

m gNpc;M
i in the bias error is approximated by an ensembled-averaged estimate hfFfp

m gNpc;M
iM.

Therefore, the approximate expression for bias error bBF is
bBF ¼ hfFfp
m gNpc;M

iM � fFfp
m g1;M ¼

bF ðMÞ
Npc

: ð31Þ
In order to calculate the bias error based on this definition, it is necessary to compute fFfp
m gNpc;M

at Npc ¼ 1
which is impractical and computationally prohibitive. However, noting that the magnitude of the bias coeffi-
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cient bF is a function of only the grid size M, we can use two evaluations of hfFfp
m gNpc;M

iM at N pc ¼ N ð1Þpc and
N ð2Þpc to calculate bF as follows:
Fig. 7.
n, LP
bF ðMÞ ¼
N ð1Þpc N ð2Þpc

N ð2Þpc � N ð1Þpc

hfFfp
m gN ð1Þpc ;M

iM � hfFfp
m gN ð2Þpc ;M

iM
� 

: ð32Þ
If more than two values of Npc are used, the slope obtained from a linear least-squares fit to the data yields the
bias coefficient bF .

Although there is considerable spatial variation of the bias error, the variation of hfFfp
m gNpc;M

iM with N�1
pc is

shown in Fig. 7 at the same representative location (x ¼ 0:5; y ¼ 0; 5) where the statistical error scaling was
shown. From the figure, the linear behavior of bias with N�1

pc is apparent. Since the total deterministic error
exhibits different spatial distribution for each scheme, a contour plot of the bias coefficient bF is more infor-
mative. The bias coefficient is calculated using Eq. (32), and Fig. 8 shows that TSE is the least biased estimator
(by two orders of magnitude compared to the other schemes considered) followed by PCA, LPI-2, and LPI-4.
4.1.5. Discretization error

Discretization error defined by Eq. (26) depends only on the spatial resolution, or grid size, h. A smaller
value of h (more grid points) for a given Npc will yield a more resolved mean field, and hence a lower discret-
ization error.

Similar to observations made for bias error, if the discretization error is estimated based on its definition
(cf. Eq. (26)), then one needs to calculate fFfp

m g1;M which is impractical. Therefore, we calculate SF by forming

an approximate estimate for fFfp
m g1;M denoted by fFfp

m ge. For a fixed grid size M with known bias coefficient bF

(see Eq. (31)), the estimate of fFfp
m gNpc;M

in the limit of Npc going to infinity is obtained by Richardson extrap-

olation (Xu and Pope, 1999) of hfFfp
m gNpc;M

iM at two or more values of Npc. The expression for fFfp
m ge is
fFfp
m ge ¼

PN
i¼1hfFfp

m gN ðiÞpc ;M
iM � bF

PN
i¼1ðN ðiÞpcÞ

�1

N
ffi fFfp

m g1;M ; ð33Þ
where N is the number of Npc values for which the ensemble-averaged estimates are formed for each grid size
M. In the estimation of bias coefficient, the effect of statistical fluctuations is minimized by choosing
NpcM ¼ 60; 000. Furthermore, in the above expression for estimating fFfp

m ge, the effect of bias is also removed
Npc
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from the numerical estimate. The effects of both statistical fluctuations and bias error are minimized in the
estimate of fFfp

m ge; thus, fFfp
m ge is a good approximate estimate for fFfp

m g1;M .
Figs. 9a and b show the convergence of spatial discretization error SF ¼ jfFfp

m ge � hFfp
m ij with cell size

h ¼ ðDxDyÞ1=2 at two representative ðx; yÞ locations (0.5,0.5) and (0.6,0.2), respectively. Fig. 9a shows that at
the (0.5,0.5) location, LPI-4 incurs the least discretization error and has the highest rate of convergence; fol-
lowed by LPI-2, PCA, and TSE. The convergence rates are once again very close to the theoretical values
and show trends similar to those observed for forward interpolation error in Section 4.1.1. At the (0.6,0.2) loca-
tion, however, Fig. 9b shows that the convergence rate of all schemes have changed considerably. LPI-4 now
has the lowest rate of convergence. PCA, on the other hand, is the fastest converging scheme followed by TSE
and LPI-2.

Since the rate of convergence of spatial discretization error (Fig. 9) exhibits strong spatial non-uniformity
for each scheme, a global discretization error
bS F ¼
1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

m¼1

ðfFfp
m ge � hFfp

m iÞ
2

vuut ð34Þ
is defined using the standard rms technique given by Eq. (34), with M ¼ Mx �My �Mz being the total number
of grid nodes. Fig. 10 shows the convergence of global discretization error bSF with grid spacing h. The figure
reveals a deficiency in LPI-4, which is no longer the fastest converging scheme. This sharp fall in the conver-
gence rate of global discretization error incurred by LPI-4 can be explained as a result of strong spatial non-
uniformity of local convergence rates observed in Fig. 9. On a coarse grid (high value of h), LPI-4 is the most
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accurate estimator but it is least accurate on fine grids (at lower h) due to the slow rate of convergence of its
global discretization error. PCA exhibits the highest rate of convergence of global discretization error, fol-
lowed by TSE, LPI-2, and LPI-4.

Our results for this test case of zero particle velocity variance show that the statistical error for all schemes
is of the same order of magnitude. However, based on the magnitude of bias error, and the rate of convergence
of global discretization error, TSE and PCA stand out as the preferred methods for estimating the mean inter-
phase momentum transfer term.
4.2. Test 2: Effect of non-zero particle velocity variance

In this test we investigate the effect of non-zero particle velocity variance that is representative of many
practical particle-laden flows. Non-zero particle velocity variance may arise as a result of turbulence. The only
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change from the baseline test is the particle velocity distribution, which is now specified to be a normal with
non-zero variance:
Fig. 11
cell Np

The sl
V �1¼
D
N½hV 1i; r2

V 1
� � ½1:0; 0:3�: ð35Þ
Since the particle velocity distribution now has a finite variance, it is expected that the statistical error in esti-
mating the mean interphase momentum transfer term will be larger than that incurred in the baseline test case
with zero variance (cf. Fig. 5).

Fig. 11 shows the statistical error incurred by the various schemes for finite particle velocity variance, but
with all other test conditions identical to those in Fig. 5. As expected, the statistical error shows an increase for
all the schemes (by at least one order of magnitude), but the increase is not the same for all schemes. While in
the baseline test with zero particle velocity variance the statistical error is Oð10�4Þ even with just 10 particles
per cell for all the schemes (cf. Fig. 5b), Fig. 11b shows that for r2

V 1
¼ 0:3 with 10 particles per cell the statis-

tical error is at least an order of magnitude higher Oð10�3 � 10�2Þ. If the particle velocity variance is not zero,
Fig. 11b also shows that the LPI-4 and LPI-2 schemes incur statistical error that is an order of magnitude
larger than that incurred by TSE or PCA. The difference in the statistical error incurred by the schemes per-
sists even with increasing MIS, as shown in Fig. 11a.

The bias coefficient bF contours for Test 2 exhibit similar spatial variation for all the schemes as seen in Test 1
(see Fig. 8), and are hence not presented here. However, an important effect of non-zero particle velocity var-
iance is to significantly increase the bias coefficient values for TSE (min/max: �2/0.5), whereas those of LPI-4
(min/max: �10/6), LPI-2 (min/max: �8/4), and PCA (min/max: �3/3) remain at levels similar to that seen in
Test 1. Nevertheless, even for this test TSE incurs the least bias error of all the schemes considered.

Fig. 12 shows the variation of global discretization error ŜF with h, which when compared to the previous
case of zero variance (Fig. 10) shows that the magnitude of global discretization error and as well as its rate of
convergence remain nearly the same. This observation is not surprising because the only difference between the
two test cases is in the particle velocity distribution, which should not affect the discretization error.

Both TSE and PCA outperform LPI-4 and LPI-2 in terms of statistical error and incur relatively low bias
error. Also, the rate of convergence of global discretization error for TSE and PCA is nearly twice that of LPI-
4. The results of this test reaffirm the conclusions of Test 1 that both TSE and PCA are the best schemes to
estimate the mean interphase momentum transfer term.
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Fig. 12. Convergence of global discretization error ŜF with grid spacing h for Test 2. h, LPI-4; n, LPI-2; s, PCA, e, TSE. The slope of
the linear least-squares fit is indicated in the legend. Comparison with Fig. 10 reveals that the effect of non-zero particle velocity variance
on the magnitude and convergence rate of the global discretization error is minimal.
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4.3. Test 3: Variation of particle position distribution

In our numerical tests thus far we have chosen the particles to be uniformly distributed in physical space.
However, in realistic particle-laden flows the particles will not be uniformly distributed in general. In this test,
the fluid velocity field and particle velocity distribution are retained as in Test 2 (finite variance). In order to
ascertain the effect of non-uniform particle distribution, the particle number density field is specified to be
Fig. 13
of the
nðx; yÞ ¼ no exp �ðx�Lx=2Þ2 þ ðy �Ly=2Þ2

L2
x=16þL2

y=16

 !
; ð36Þ
where no is a constant so chosen such that there are a finite number of particles near the boundary cells.
Fig. 13a shows the contour plot for nðx; yÞ=no. Using the particle position pdf fX ¼ nðxÞ=hN pi implied by
the number density in Eq. (36), the analytical expression for normalized mean interphase momentum transfer
term is obtained from Eq. (16). Fig. 13b shows the resulting normalized mean interphase momentum transfer
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term. In this inhomogeneous test case no attempt is made to decompose the various numerical errors, but only
the error resulting from the averaged estimate obtained from multiple realizations along with the 95% confi-
dence intervals are presented. The 95% confidence interval (Xu and Pope, 1999) for the estimation of inter-
phase momentum transfer term is estimated as
Fig. 14
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The test is carried out on a 61 · 61 · 4 grid and 200 independent but identical simulations are performed in
order to calculate the 95% confidence intervals. In Fig. 14a, the symbols indicate the ensemble-averaged mean
interphase momentum transfer term hfFfp

m gNpc;M
iM obtained using LPI-4 and LPI-2. The scale for the symbols

is on the left vertical axis. The height of the error bars indicate the 95% confidence intervals on the ensemble
average, and in order to distinguish between the two cases the error bars with the longer cross-bar indicate
LPI-4. In the same figure, the lines represent jhFfp

m i � hfFfp
m gNpc;M

iMj, the error between the ensemble-averaged
and analytical mean interphase momentum transfer term. The scale for the error is on the right vertical axis.
Since the number density variation in x and y is identical, the ensemble-averaged mean interphase momentum
transfer term and error are reported along x, for y ¼ z ¼ 0:5. Fig. 14b shows results for the same test as
Fig. 14a, but for the PCA and TSE schemes. The longer cross-bars on the 95% confidence intervals correspond
to PCA.

For all the schemes considered, the size of the confidence interval shows an increase in the regions of low
number density. This increase is maximum for LPI-4 followed by LPI-2, PCA, and TSE. The error shows the
same trend in the regions of low number density. This test shows the advantage of using TSE and PCA over
LPI-4 and LPI-2 for particle-laden systems with non-uniform number density.

4.4. Test 4: Variation of fluid velocity field

Depending on the type of simulation (CFD, LES or DNS), the spectral content of the fluid velocity field will
be different. In this test, the fluid velocity field is chosen to be a sinusoidal field given by Eq. (38) and its wave-
length is varied by increasing fo from a minimum value of 1 to a maximum value of 25. This test reveals the
accuracy of mean interphase momentum transfer term estimation with variation in the fluid velocity spectrum
of the velocity field
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Fig. 15. Ensemble-averaged summed mean square error �̂F as a function of fo, the frequency of the transcendental velocity field.
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The ensemble-averaged summed mean square of the total error, denoted by �̂F , and given by the following
expression
�̂F ¼
1

M
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i¼1

PM3

m¼1ðfF
fp
m g

i � hFfp
m iÞ

2

M3
ð39Þ
is calculated for different values of fo.
Particles are uniformly distributed in physical space and the particle velocity field of Test 2 (finite variance)

is retained here. The number of computational particles per cell Npc is 100 and number of realizations
M ¼ 150. The test is performed on a 51 · 51 · 4 grid.

Fig. 15 shows the variation of �̂F versus fo and it can be observed that at low wavenumbers TSE and PCA
outperform LPI-4 and LPI-2 by an order of magnitude, at intermediate wavenumbers LPI-4 and LPI-2
become more accurate than PCA and TSE, and at the highest wavenumber, all the schemes are rather inac-
curate and have approximately the same error magnitude. The reduction in accuracy for PCA and TSE from
low to intermediate wavenumbers compared to LPI-4 and LPI-2 is attributed to the smoothing property of
cubic splines and linear least-squares, respectively. Therefore, for LES and DNS simulations, PCA and
TSE will require higher grid resolution to yield the same accuracy as LPI-4 or LPI-2.
5. Comparison with representative LE numerical parameters

In this study we have performed calculations with very high numerical resolution. The number of particles
per cell in our tests typically ranges from 100 to 400. In addition, the number of independent realizations sim-
ulated for each test also varies from 100 to 400. However, in most particle-laden simulations of two-way cou-
pled dispersed two-phase flows using LE approach, the number of particles per cell is usually one or even two
orders of magnitude lower than the values we have used for our tests, and typically only one realization is
simulated. Typical values for the nominal number of particles per cell5 in 3-D LE simulations range from
0.0156 to 0.125 in (Sundaram and Collins, 1999) to exactly 1 in (Boivin et al., 1998). In 2-D calculations higher
Nn

pc values have been used: 3–30 in Narayanan et al. (2002) and 16 to 500 in Lakehal and Narayanan (2003). In
all but one of these studies (Lakehal and Narayanan, 2003), only one realization is simulated. The contour
plot of absolute total error �F ¼

��fF fp
x;mgNpc;M

� hF fp
x;mi
�� incurred in the calculation of mean interphase momen-

tum transfer term for Test 2 on a 61 · 61 · 4 grid with N pc ¼ 5 and M ¼ 1 is shown by Fig. 16. The figure
e nominal number of particles per cell Nn
pc is defined as the ratio of total number of particles to total number of grid cells.



Fig. 16. Contour plot of absolute total error �F ¼ jfF fp
x;mgN pc ;M

� hF fp
x;mij for Test 2 with representative LE numerical parameters—a single

realization M ¼ 1 with Npc ¼ 5 particles per cell on a 61� 61� 4 grid—to demonstrate the unacceptably large errors incurred by schemes
such as LPI-4 and LPI-2.
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clearly reveals that while all the schemes are unable to provide estimates within 10% error using 5 particles per
cell with only one realization, TSE comes closest with a maximum error of only 20%. LPI-4 gives errors as
high as 80%. As noted in the introduction, these large numerical errors directly impact the physical insight
that is provided by LE simulations. However, it is important to bear in mind that there are other numerical
approximations in the fluid flow solver (artificial viscosity and pressure correction) that can mitigate these
errors.
6. Conclusions

Comprehensive testing of four numerical schemes used to estimate mean interphase transfer terms in LE
simulations for a novel test problem that admits an analytical solution enables characterization of numerical
convergence, as well as accuracy. For estimation of the mean interphase momentum transfer term, all our four
tests suggest the use of TSE and PCA, or even LPI-2, over LPI-4. TSE and PCA consistently give low statis-
tical and bias errors and yield good estimates even in the regions of low number density. The only exception is
when there is high spectral content in the fluid velocity field, where due to the smoothing nature of TSE and
PCA, their estimates are less accurate than LPI-4 and LPI-2.

Testing with representative values for the numerical parameters found in typical LE simulations reveals
that LPI-4 and LPI-2 incur unacceptably high error, whereas TSE yields the most accurate estimate of all
the schemes. The tests validate an error model (cf. Eq. (21)) of the form
�F ¼
cF hffiffiffiffiffiffiffiffi
N pc

p þ bF ðMÞ
N pc

þ aF

Mp
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that decomposes the error into statistical, bias and discretization components, and explicitly characterizes the
error in terms of numerical parameters (grid size M and number of particles per cell Npc). An approach to
quantifying the values of the coefficients aF , bF , and cF in the error model is demonstrated for the test problem.
If efficient ways to quantify these coefficients are developed for general LE problems, then estimates for the
numerical error can be obtained from this model. This can provide the required values of numerical param-
eters for a given error tolerance.

Our study reveals the need to carefully choose the appropriate numerical scheme for forward interpolation
and backward estimation. Although LPI-4 is found to be the preferred scheme for forward interpolation, it
results in relatively poor estimates for the mean interphase momentum transfer term. None of the schemes
considered is optimal for both forward interpolation and backward estimation. This conclusion also implies
that, for the schemes considered, the PIS requirement of Sundaram and Collins (1996)—which states that in
order to ensure overall energy balance, the order of the interpolation scheme used in the forward interpolation
should be the same as that used in the backward estimation—is at odds with numerical accuracy and conver-
gence requirements.

Spatially non-uniform particle distribution results in poor estimates of mean interphase momentum trans-
fer term in regions where there are fewer particles. If the number density of physical particles becomes zero
locally, then TSE will encounter difficulties due to ill-conditioned matrices. One way to obtain good estimates
even in regions of low physical particle number density is by introducing more computational particles in that
region. In other words, if the number density of computational particles is maintained relatively uniform dur-
ing the entire course of simulation, then the statistical error remains uniformly low over the entire domain.
This needs to be addressed by computational particle number density control.

In order to obtain numerically converged results, it is imperative to simultaneously reduce the statistical
and deterministic error components that result from backward estimation. The bias and statistical error com-
ponents depend on the number of particles per cell. Therefore, numerical convergence cannot be achieved by
grid refinement with a fixed total number of computational particles because the number of particles per cell
keeps decreasing. This is because the bandwidth of most numerical schemes scales with the grid spacing.6

Therefore, it is necessary to keep Npc fixed in grid resolution studies of LE simulations so that statistical
and bias error remain at the same level. While statistical error can be effectively reduced by multiple indepen-
dent simulations, the same is not true for bias error, which scales as N�1

pc . Time-evolving tests could show
higher bias error due to feedback in the particle evolution equations. The only way to reduce bias error is
to increase the number of computational particles per cell.

Another important consideration when choosing a numerical scheme for LE calculations is the computa-
tional cost involved, and the estimation of additional quantities that may be required. LPI-2 being a second-
order scheme is the least expensive. PCA and LPI-4 involve the same number of operations while TSE is the
computationally most expensive estimation scheme. However, if in addition to the mean interphase momen-
tum transfer term, the estimation of its gradient is also required, then TSE becomes the favored scheme. This is
because in TSE, once the interphase momentum transfer term has been calculated, no additional operations
are required to compute the gradients. For LPI-4, LPI-2, and PCA, the estimation of gradient amounts to
approximately doubling the computational cost that is required for calculating the mean interphase momen-
tum transfer term.
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Appendix A. Details of interpolation schemes

For the simplest PIC method (Crowe, 1982), the estimate for mean interphase momentum transfer term at
grid node m enclosing volume V m is given by
6 An
 exception is TSE, which is a truly grid-free estimation method.
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fFfp
m g ¼

1

V m

XNv

k¼1

fknk
p; ðA:1Þ
where Nv is the number of particles contained in volume V m, and nk
p is the number of physical particles rep-

resented by the kth computational particle.
In order to avoid complicated expressions arising from expressing the interpolation schemes in 3-D, only 1-

D formulations are given with the reference to 1-D grid shown in Fig. 17. These expressions can be readily
extended to three dimensions. In Fig. 17, m is the grid point index and c is the grid cell index.

LPI-2, LPI-4 and PCA can be expressed in a very general way for both forward interpolation and backward
estimation. The formulation for TSE is slightly different and will be discussed separately. Fluid velocity
fU fðX kÞgM at the kth particle’s location, which belongs to cth cell, is given by the summation of product
of fluid velocities at grid nodes U fðxmÞ and basis functions bx

l or
fU fðX kÞgM ¼
XcþO=2

m¼c�O=2þ1

U fðxmÞbx
lðn

k
l Þ; ðA:2Þ
where O is the order of the scheme which is two for LPI-2 and four for both LPI-4 and PCA, l ¼ m� cþ O=2,
and nk

l is the elemental coordinate that is defined for each scheme in the following subsections. The convention
followed in the above equation numbers the basis functions from left to right. For example, if a particle is
located in 5th cell (i.e. c = 5), then the fourth-order LPI-4 interpolation scheme will yield four non-zero basis
functions b1 through b4, and the fluid velocity at particle location will have contributions from grid nodes 4
through 7 or m ¼ 4; 7 in the above summation. Based on the convention followed, the basis function that adds
the contribution of fluid velocity at 4th grid node is numbered 1 while the one for 7th grid node is numbered 4.

Similarly, a general expression for the mean interphase momentum transfer term
�

F fp
x;m

�
at mth grid node is

given by
fF fp
x;mg ¼

1

V m

XmþO=2�1

c¼m�O=2

XNc

k¼1

f k
x nk

pbx
lðn

k
l Þ; ðA:3Þ
where N c is the number of computational particles in cth cell, and all the other quantities have the same mean-
ing as before. To clarify the above equation, consider the case of a fourth ordered scheme. From Fig. 17, the
estimate for fF fp

7;xg will include the contribution from particles located in cells 5–8. The above method for esti-
mating the mean interphase momentum transfer has been widely used in simulation of particle-laden flows.
For example, Boivin et al. (1998) uses the second-order linear interpolation (LPI-2), and Sundaram and Col-
lins (1996) uses the fourth-order Lagrange polynomial interpolation (LPI-4) scheme.

The next three subsections that follow defines the basis functions for LPI-4, LPI-2, and PCA. In addition,
the last subsection completely describes the two-stage estimation (TSE) algorithm which so far has not been
explained.

A.1. Linear interpolation (LPI-2)

LPI-2 is a second-order scheme. For a point x that lies in the interval ½xm; xmþ1�, it has two linear basis
functions
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bx
1 ¼ 1� n;

bx
2 ¼ n;

ðA:4Þ
where n is the elemental coordinate defined as
n ¼ n1 ¼ n2 ¼
x� xm

xmþ1 � xm
: ðA:5Þ
A.2. Lagrange polynomial interpolation (LPI)

LPI-4 is a fourth-order scheme and has four cubic polynomials as basis functions. For a point x lying in the
interval ½xm; xmþ1� on a structured grid with constant grid spacing, the four basis functions are
bx
1 ¼ �

1

6
ðnÞðn� 1Þðn� 2Þ;

bx
2 ¼

1

2
ðn� 1Þðnþ 1Þðn� 2Þ;
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3 ¼ �

1

2
ðnÞðnþ 1Þðn� 2Þ;

bx
4 ¼

1

6
ðnÞðnþ 1Þðn� 1Þ;

ðA:6Þ
where n is the elemental coordinate defined as
n ¼ n1 ¼ n2 ¼ n3 ¼ n4 ¼
x� xm

xmþ1 � xm
: ðA:7Þ
These basis functions are non-zero over the entire interpolation stencil that spans the interval ½xm�1; xmþ2�. They
are shown in Fig. 2a.

A.3. Piecewise cubic approximation (PCA)

PCA is a fourth-order scheme and has four piecewise cubic polynomials as basis functions. For a point x

lying in the interval ½xm; xmþ1� on a structured grid with constant grid spacing, the four basis functions are
bx
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6
ð2þ n1Þ3; n1 ¼
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6
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h

for 1 6 n4 6 2;

ðA:8Þ
where n1, n2, n3, n4 are the elemental coordinates defined distinctively for each basis function. It is to be noted
that unlike in LPI-4, the basis functions for PCA are defined only piecewise. Fig. 2 shows these basis functions
which are non-zero in the interval ½xm; xmþ1�.

A.4. Two-stage estimation algorithm

The TSE algorithm constructs a piecewise-polynomial approximation ~/ðxÞ to a mean field h/ðxÞi from par-
ticle data /l given at locations X l. It was originally developed by Dreeben and Pope (1992) for application to
PDF methods, and has the advantage of working with unstructured grids also. It is being reproduced here for
completeness. In this algorithm, the first stage constructs estimates at knots (center of mass locations of the
particle data) using top-hat or linear basis functions (LPI-2). These first-stage estimates are then used as
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weighted data for the second stage in which a local least-squares algorithm is implemented to fit a linear or
quadratic polynomial. The details for each stage are given in the next two subsections.

A.4.1. Stage 1

The following quantities are defined in the first stage: The weight of the particles which support the mth grid
node,
wðxmÞ ¼
Xm

c¼m�1

XN c

l¼1

llbx
m�cþ1; ðA:9Þ
the center of mass of particles which support the mth grid node,
X ðxmÞ ¼
Pm

c¼m�1

PNc

l¼1X lllbx
m�cþ1

wðxmÞ
; ðA:10Þ
and finally the estimate of the particle property at the center of mass,
�/ðxmÞ ¼
Pm

c¼m�1

PNc

l¼1/
lllbx

m�cþ1

wðxmÞ
; ðA:11Þ
where /l is called the particle property data. For mean interphase momentum transfer term estimation in x�
direction, the expression for /l is
/l ¼ f l
x nðxc; tÞ;
where fx is the particle force, and nðxc; tÞ is the particle number density at the center of the cth cell and it is
computed as
nðxc; tÞ ¼
1

V c

XNc

l¼1

nl: ðA:12Þ
A.4.2. Stage 2

In stage 2, a local least-squares algorithm is implemented to calculate an approximation to the mean field
that minimizes error with respect to the knot estimates. The output from the first stage, (X ðxmÞ; �/ðxmÞ) along
with the weights wm forms the input for this stage. The objective of the local least-squares method is to provide
an estimate for the mean field at the Eulerian grid node xm by fitting a polynomial to data which lies within a
neighborhood of xm, the size of which is characterized by bandwidth, W. For each estimate, the data is
weighted with a kernel Q, where
QðuÞ � ð1� u2Þ2; juj 6 1;

0; otherwise:

(

If xp is an Eulerian grid node, then ~/ðxpÞ is a polynomial estimate for the underlying function in a neighbor-
hood of xm which minimizes the expression
X

m

Q
X ðxmÞ � xp

W

� �
wðxmÞ½~/ðxpÞ � �/ðxmÞ�: ðA:13Þ
The linear two-stage algorithm is implemented by fitting a first order polynomial to the points ðX ðxmÞ; �/ðxmÞÞ
in a neighborhood within a distance W centered at the grid node xp. We take a function of the form
~/ðxÞ ¼ ~aþ ~bðx� xpÞ;
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where ~a and ~b are unknown constants to be determined. If
bX mp ¼ X ðxmÞ � xp; ðA:14Þ

bQmp ¼ wðxmÞQ
bX mp

W

 !
; ðA:15Þ
then the constants ~a and ~b which minimize Eq. (A.13) are determined by solving the matrix equation
P
m

bQmp
P
m

bQmp
bX mpP

m

bQmp
bX mp

P
m

bQmp
bX 2

mp

264
375 ~a

~b

� �
¼

P
m

bQmp
�/mP

m

bQmp
�/m
bX mp

264
375: ðA:16Þ
Finally, the estimate for the mean field – which is mean interphase momentum transfer term in our case – at
the Eulerian grid node xm is
~/ðxmÞ ¼ ~a: ðA:17Þ
Appendix B. Details of error decomposition

B.1. Statistical error

In the statistical error definition given by Eq. (22), fFfp
m gNpc;M

is an unbiased estimator of hfFfp
m gNpc;M

i
but owing to finite sample size Npc, it has statistical fluctuations measured by the variance r2

F of fFfp
m gNpc;M

,

which is given by Eq. (B.1). The scaling of statistical error with number of samples is given by Eq. (23),
where cF which scales as rF is referred to as the statistical error coefficient, and h is a standardized normal
variate.
r2
F ¼ N pc varðfFfp

m gNpc;M
Þ: ðB:1Þ
In the definition of statistical error given by Eq. (22), hfFfp
m gNpc;M

i is an unknown and is approximated by
ensemble averaging fFfp

m gNpc;M
over M independent but identical simulations, such that
hfFfp
m gNpc;M

i ffi hfFfp
m gNpc;M

iM ¼
1

M

XM
i¼1

fFfp
m g
ðiÞ
Npc;M

: ðB:2Þ
Note that hfFfp
m gNpc;M

iM is itself a random variable with mean and variance given by
hhfFfp
m gNpc;M

iMi ¼ hfFfp
m gNpc;M

i; ðB:3Þ

varðhfFfp
m gNpc;M

iMÞ ¼
1

M
varðfFfp

m gNpc;M
Þ ¼ r2

F

MNpc

: ðB:4Þ
If the statistical error due to finite number of realizations M is defined as
RF ;M ¼ hfFfp
m gNpc;M

iM � hfFfp
m gNpc;M

i; ðB:5Þ
then from the central limit theorem, the scaling of RF ;M with number of realizations is
RF ;M ¼M�1=2rF ;Mn; ðB:6Þ
where n is a standardized normal variate, and rF ;M is the standard error which based on Eq. (B.4) can be
written as
r2
F ;M ¼MvarðhfFfp

m gNpc;M
iMÞ ¼

r2
F

N pc

: ðB:7Þ
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Therefore, the final form for RF ;M is
RF ;M ¼ hfFfp
m gNpc;M

iM � hfFfp
m gNpc;M

i ¼ cF nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMNpcÞ

p : ðB:8Þ
The total statistical error RF can be rewritten as the summation of approximate statistical error denoted by bRF

and RF ;M (which is defined by above equation):
RF ¼ bRF þ RF ;M; ðB:9Þ

where the definition of approximate statistical error and its scaling with the number of samples and realiza-
tions is given by
bRF ¼ fFfp
m gNpc;M

� hfFfp
m gNpc;M

iM ¼ RF � RF ;M ¼
cF hffiffiffiffiffiffiffiffi
Npc

p � cF nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMNpcÞ

p : ðB:10Þ
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